3 первый закон ньютона. Первый закон Ньютона

Законы динамики Ньютона (классическая динамика) имеют ограниченную область применимости. Они справедливы для макроскопических тел, движущихся со скоростями, много меньшими, чем скорость света в вакууме.

Формулировка первого закона Ньютона (он также известен как закон инерции ):

Первый закона Ньютона Существуют такие системы отсчёта, называемые инерциальными, относительно которых тело движется прямолинейно и равномерно, если на него не действуют другие тела или действие этих тел скомпенсировано.

В инерциальной системе отсчета тело движется равномерно и прямолинейно при отсутствии действующих на него сил.

Инерция Явление сохранения скорости движения тела при отсутствии внешних воздействий или при их компенсации называется инерцией. Поэтому первый закон Ньютона называют законом инерции.

Если равнодействующая всех сил, действующих на данное тело равна нулю, то тело движется равномерно и прямолинейно или не движется вовсе. В реальности добиться равенства нулю равнодействующей силы невозможно. Но можно пренебречь некоторыми действиями и выбрать такой участок движения, когда скорость тела существенно не меняется.

Впервые закон инерции был сформулирован Галилео Галилеем (1632 г.). Ньютон обобщил выводы Галилея и включил их в число основных законов движения.

ИСО инерциальные системы отсчета - это системы отсчета, в которых выполняется 1-й закон Ньютона.

Итак, причиной изменения скорости движения тела в инерциальной системе отсчета всегда является его взаимодействие с другими телами. Для количественного описания движения тела под воздействием других тел необходимо ввести две новые физические величины – инертную массу тела и силу .

Масса

Масса – это свойство тела, характеризующее его инертность. При одинаковом воздействии со стороны окружающих тел одно тело может быстро изменять свою скорость, а другое в тех же условиях – значительно медленнее. Принято говорить, что второе из этих двух тел обладает большей инертностью, или, другими словами, второе тело обладает большей массой.

Если два тела взаимодействуют друг с другом, то в результате изменяется скорость обоих тел, т. е. в процессе взаимодействия оба тела приобретают ускорения. Отношение ускорений двух данных тел оказывается постоянным при любых воздействиях. В физике принято, что массы взаимодействующих тел обратно пропорциональны ускорениям, приобретаемым телами в результате их взаимодействия.

Сравнение масс двух тел.

\[ \dfrac{m_1}{m_2} =-\dfrac{a_2}{a_1} \]

В этом соотношении величины \(a_1\) и \(a_2\) следует рассматривать как проекции векторов \(a_1\) и \(a_2\) на ось OX . Знак «минус» в правой части формулы означает, что ускорения взаимодействующих тел направлены в противоположные стороны.

В Международной системе единиц (СИ) масса тела измеряется в килограммах (кг) .

Масса любого тела может быть определена на опыте путем сравнения с массой эталона (\(m_{\text{эт}} = 1 \text{кг} \) ). Пусть \(m_1 = m_{\text{эт}} = 1 \text{кг} \) . Тогда

\[ m_2=-\dfrac{a_1}{a_2} m_{\text{эт}} \]

Масса тела – скалярная величина . Опыт показывает, что если два тела с массами \(m_1 \) и \(m_2 \) соединить в одно, то масса \(m \) составного тела оказывается равной сумме масс \(m_1 \) и \(m_2 \) этих тел:

\[ M = m_1 + m_2 \]

Это свойство масс называют аддитивностью .

Сила

Сила – это количественная мера взаимодействия тел. Сила является причиной изменения скорости тела. В механике Ньютона силы могут иметь различную физическую природу: сила трения, сила тяжести, упругая сила и т. д. Сила является векторной величиной, имеет модуль, направление и точку приложения .

Векторная сумма всех сил, действующих на тело, называется равнодействующей силой .

Чтобы изменить скорость движения тела, на него необходимо подействовать с некоторой силой. Естественно, результат действия одинаковых по величине сил на различные тела будет различным.

Существует 4 основных типа взаимодействия :

  • гравитационное,
  • электромагнитное,
  • сильное,
  • слабое.

Все взаимодействия являются проявлениями этих основных типов.

Примеры сил: сила тяжести, сила упругости, вес тела, сила трения, выталкивающая (архимедова) сила, подъемная сила.

Что такое сила? Сила - мера воздействия одного тела на другое.

Сила - векторная величина. Сила характеризуется:

  • модулем (абсолютной величиной);
  • направлением;
  • точкой приложением.

Для измерения сил необходимо установить эталон силы и способ сравнения других сил с этим эталоном.

В качестве эталона силы можно взять пружину, растянутую до некоторой заданной длины. Модуль силы F 0, с которой эта пружина при фиксированном растяжении действует на прикрепленное к ней тело, называют эталоном силы . Способ сравнения других сил с эталоном состоит в следующем: если тело под действием измеряемой силы \(\vec{F} \) и эталонной силы \(\vec{F_0} \) остается в покое (или движется равномерно и прямолинейно), то силы равны по модулю \(\vec{F} \) = \(\vec{F_0} \) .

Сравнение силы \(\vec{F} \) с эталоном. \(\vec{F} \) = \(\vec{F_0 } \)

Если измеряемая сила \(\vec{F } \) больше (по модулю) эталонной силы, то можно соединить две эталонные пружины параллельно. В этом случае измеряемая сила равна \(\vec{ 2 F_0 } \) . Аналогично могут быть измерены силы \(\vec{ 3 F_0 } \) , \(\vec{ 4 F_0 } \) и т. д.

Сравнение силы \(\vec{F } \) с эталоном. \(\vec{F} \) = \(\vec{2 F_0} \)

Измерение сил, меньших \(\vec{2 F_0} \)

Сравнение силы \(\vec{F } \) с эталоном. \(\vec{F} \) = \(\vec{2 F_0} \cos (\alpha) \)

Эталонная сила в Международной системе единиц называется Ньютон(Н) .

Сила в 1 Н сообщает телу массой 1 кг ускорение 1 м/с2

Размерность [Н]

\[ 1\text{Н} = 1\dfrac{\text{кг}\cdot \text{м}}{\text{с}^2} \]

На практике нет необходимости все измеряемые силы сравнивать с эталоном. Для измерения сил используют пружины, откалиброванные описанным выше способом. Такие откалиброванные пружины называются динамометрами . Сила измеряется по растяжению динамометра.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

В качестве первого из трех законов. Поэтому этот закон называют первым законом Ньютона .

Первый закон механики , или закон инерции был сформулирован Ньютоном следующим образом:

Любое тело удерживается в состоянии покоя или равномерного прямолинейного движения, пока под действием приложенных сил не изменяет это состояние .

В окружении любого тела, покоится оно или движется, есть другие тела, некоторые из которых или все как-то действуют на тело, влияют на состояние его движения. Чтобы выяснить влияние окружающих тел, надо исследовать каждый отдельный случай.

Рассмотрим какое-либо покоящееся тело, не обладающее ускорением, а скорость постоянна и равна нулю. Допустим, это будет шарик, подвешенный на резиновом шнуре. Он находится в покое относительно Земли. Около шарика множество различных тел: шнур, на котором он висит, множество предметов в комнате и других помещениях и, конечно, Земля. Однако, действие всех этих тел на шарик не одинаково. Если, например, убрать мебель в комнате, это не окажет какого-либо влияния на шарик. Но если перерезать шнур, шарик под влиянием Земли начнет падать вниз с ускорением. Но пока шнур не был перерезан, шарик находился в покое. Этот простой опыт показывает, что из всех тел, окружающих шарик, только два заметно влияют на него: резиновый шнур и Земля. Их совместное влияние и обеспечивает состояние покоя шарика. Стоило устранить одно из этих тел — шнур, и состояние покоя нарушилось. Если бы возможно было убрать Землю, это тоже нарушило бы покой шарика: он стал бы двигаться в противоположном направлении.

Отсюда приходим к выводу, что действия на шарик двух тел — шнура и Земли, компенсируют (уравновешивают) друг друга. Когда говорят, что действия двух или нескольких тел компенсируют друг друга, то это значит, что результат их совместного действия такой же, как если бы этих тел вовсе не было.

Рассмотренный пример, как и другие подобные примеры, позволяют сделать следующий вывод: если действия тел компенсируют друг друга, то тело под влиянием этих тел находится в состоянии покоя.

Таким образом, мы пришли к одному из основных законов механики , который называют первым законом Ньютона :

Существуют такие системы отсчета, относительно которых движущиеся тела сохраняют свою скорость постоянной, если на них не действуют другие тела или действие других тел компенсируется.

Однако, как выяснилось со временем, первый закон Ньютона выполняется только в инерциальных системах отсчета . Поэтому с точки зрения современных представлений закон Ньютона формулируют следующим образом:

Системы отсчета, относительно которых свободное тело при компенсации внешних воздействий движется равномерно и прямолинейно, называют инерциальными системами отсчета .

Свободным телом в этом случае называют тело, на которое другие тела не оказывают воздействия.

Необходимо помнить, что в первом законе Ньютона рассматриваются тела, которые могут быть представлены в качестве материальных точек.

Три закона сэра Исаака Ньютона описывают движение массивных тел и как они взаимодействуют.

В то время как законы Ньютона могут показаться очевидными для нас сегодня, более трех веков назад они считались революционными.

Содержание:

Ньютон, пожалуй, наиболее известен своей работой по изучению гравитации и движения планет. Призванный астрономом Эдмондом Галлеем после признания того, что за несколько лет до этого он потерял доказательство эллиптических орбит, Ньютон опубликовал свои законы в 1687 году в своей оригинальной работе «Philosophiæ Naturalis Principia Mathematica» (Математические принципы естественной философии), в которой он формализовал описание того, как массивные тела движутся под воздействием внешних сил.

Формулируя свои три закона, Ньютон упростил обращение к массивным телам, считая их математическими точками без размера или вращения. Это позволило ему игнорировать такие факторы, как трение, сопротивление воздуха, температура, свойства материала и т. Д., И сосредоточиться на явлениях, которые могут быть описаны исключительно по массе, длине и времени. Следовательно, три закона не могут быть использованы для описания точности поведения больших жестких или деформируемых объектов; однако во многих случаях они обеспечивают подходящие точные приближения.

Законы Ньютона


Законы Ньютона относятся к движению массивных тел в инерциальной системе отсчета, иногда называемой ньютоновской системой отсчета, хотя сам Ньютон никогда не описывал такую ​​систему отсчета. Инерциальную систему отсчета можно описать как трехмерную систему координат, которая либо стационарна, либо равномерно линейна, т. е. Не ускоряется и не вращается. Он обнаружил, что движение в такой инерциальной системе отсчета может быть описано тремя простыми законами.

Первый закон движения Ньютона

Первый Закон Движения гласит: Если на тело не действуют силы или их действие скомпенсировано, то данное тело находится в состоянии покоя или равномерного прямолинейного движения. Это просто означает, что вещи не могут начинать, останавливать или изменять направление самостоятельно. Требуется сила, действующая на них извне, чтобы вызвать такое изменение. Это свойство массивных тел сопротивляться изменениям в их движении иногда называют инерцией.

Второй закон движения Ньютона

Второй закон движения описывает, что происходит с массивным телом, когда на него воздействует внешняя сила. В нем говорится: Сила, действующая на объект, равна массе этого объекта своего ускорения. Это написано в математической форме как F = ma, где F — сила, m — масса, a — ускорение. Жирные буквы указывают, что сила и ускорение являются векторными величинами, что означает, что они имеют как величину, так и направление. Сила может быть одной силой, или это может быть векторная сумма более чем одной силы, которая является чистой силой после объединения всех сил.

Когда постоянная сила действует на массивное тело, она заставляет ее ускоряться, т. е. Изменять свою скорость с постоянной скоростью. В простейшем случае сила, приложенная к неподвижному объекту, заставляет его ускоряться в направлении силы. Однако, если объект уже находится в движении или если эта ситуация просматривается из движущейся системы отсчета, это тело может показаться ускоряющимся, замедляющим или изменяющим направление в зависимости от направления силы и направлений, в которых объект и система отсчета перемещается относительно друг друга.

Третий закон движения Ньютона

Третий закон движения гласит: Для каждого действия существует равное противодействие. Этот закон описывает то, что происходит с телом, когда оно оказывает силу на другое тело. Силы всегда встречаются парами, поэтому, когда одно тело толкает другого, второе тело отталкивается так же сильно. Например, когда вы нажимаете тележку, тележка отталкивается от вас; когда вы тянете за веревку, веревка откидывается на вас; когда сила тяжести тянет вас к земле, земля подталкивает вас и когда ракета воспламеняет свое топливо за ним, расширяющийся выхлопной газ толкается на ракете, заставляя его ускоряться.

Если один объект намного, гораздо более массивный, чем другой, особенно в случае привязки первого объекта к Земле, практически все ускорение передается второму объекту, и ускорение первого объекта можно безопасно игнорировать, Например, если вы бросили мяч на запад, вам не нужно было бы считать, что вы на самом деле заставили вращаться Землю быстрее, пока мяч находился в воздухе. Однако, если вы стоите на роликовых коньках, и вы бросили мяч для боулинга, вы начнете двигаться назад с заметной скоростью.

Три закона были проверены бесчисленными экспериментами за последние три столетия, и до сих пор они широко используются для описания видов предметов и скоростей, с которыми мы сталкиваемся в повседневной жизни. Они составляют основу того, что сейчас известно как классическая механика, а именно изучение массивных объектов, которые больше, чем очень мелкие масштабы, рассматриваемые квантовой механикой, и которые движутся медленнее, чем очень высокие скорости, релятивистские механики.

Три закона Ньютона лежат в основе классической механики и позволяют вывести уравнения движения. С момента формулировки законов Ньютона пошел отчет в истории не только

Иссак Ньютон

(25.12.1642 - 20.03.1727)

Английский физик, математик и астроном, один из создателей классической физики. Автор фундаментального труда «Математические начала натуральной философии»

современной физики, но и естественных наук.


Первый закон Ньютона часто еще называется инерциальным законом. Он утверждает, что существуют такие системы отсчета, в которых любое тело, что не подверглось воздействию внешних сил, сохраняет состояние покоя или прямолинейного равномерного движения.

mx a = F

Закон говорит, что в этой же системе любые другие свободные тела должны вести себя абсолютно одинаково. Состояние покоя или равномерного движения являются вполне равноправными и не требуют объяснения. Любая система, которая находится в поступательном движении, прямолинейно и равномерно по отношению к инерциальной также является инерциальной.


Второй закон Ньютона говорит, что причиной изменения скорости тел, которые находятся в состоянии равномерного движения, может изменить свою скорость только при воздействии посторонних тел. Закон утверждает, что точка (тело) в инерциальных системах приобретает ускорение прямопропорционально силе, которая на него действует и обратнопропорциональна массе точки (тела).

Данная формула справедлива при неизменяемой массе тела. В обратном случае используется формула.

В третьем законе Ньютона говорится о том, что тела действуют друг на друга с силами одинаковыми за модулем и различными по направлению. В нем утверждается, что любые влияния тел друг на друга являются взаимными. Если тело (F 12) действует на другое тело (F 21) с определенной силой, то и другое тело тоже действует на первое. F 12 = F 21 .

Открытие данных законов стало поворотным моментом в истории физики. В совокупности законы дают физикам возможность наблюдения за всеми процессами, которые происходят во

«Я смотрю на себя, как на ребенка, который, играя на морском берегу, нашел несколько камешков поглаже и раковин попестрее, чем удавалось другим, в то время как неизмеримый океан истины расстилался перед моим взором неисследованным».

Исаак Ньютон

всей вселенной благодаря возможности поднимать в атмосферу ракеты, космические корабли и конструировать машины.

Данные законы были сформулированы Исааком Ньютоном в 1687. История их открытия известна всем. Согласно легенде, Ньютон сидел в своем саду и обратил внимание на падающее с дерева яблоко. В результате у него возникла мысль, что если сила тяготения действует на дерево, то она может действовать и повсюду. Впервые же мысль о тяготении пришла в голову студенту того же Ньютона, но она не распространилась в результате неправильных расчетов.

Главными законы классической механики являются три закона Ньютона. Сейчас мы рассмотрим их подробней.

Первый закон Ньютона

Наблюдения и опыт показывают, что тела получают ускорение относительно Земли, т. е. изме­няют свою скорость относительно Земли, только при действии на них других тел.

Представим себе, что пробка воздушного «пистолета» приходит в движении под действием газа, сжимаемого выдвигаемым поршнем, т.е. получается такая последовательная цепочка сил:

Сила, приводящая в движение поршень => Сила поршня, сжимающая газ в цилиндре => Сила газа, приводящая в движение пробку.

В этом и других подобных случаях изменение скорости, т.е. возникновение ускорения, есть результат действие сил на данное тело других тел.

Если же на тело не будут действовать силы (или силы будут скомпенсированным, т.е. ), то тело будет оставаться в покое (относительно Земли), либо двигаться равномерно и прямолинейно, т.е. без ускорения.

На основе этого позволило установить первый закон Ньютона, который чаще называют закон инерции:

Существуют такие инерциальные системы отсчета, относительно которых, тело покоится (частный случай движения) или движется равномерно и прямолинейно, если на тело не действуют силы или действия этих сил скомпенсировано.

Проверить простыми опытами данный закон практически невозможно, потому что невозможно полностью устранить действие всех окружающих сил, особенно действие трения.

Тщательные опыты по изучению движения тел были впервые произведены итальянским физиком Галилеем Галилео в конце XVI и начале XVII веков. Позже более подробнее этот закон был описан Исааком Ньютоном, поэтому в честь него и был назван этот закон.

Подобные проявления инерции тел широко используют­ся в быту и технике. Встряхивание пыльной тряпки, «сбрасывания» стол­бика ртути в термометре.

Второй закон Ньютона

Различные опыты показывают, что ускорения совпадает с направлением силы, вызывающее это ускорение. Поэтому, можно сформулировать закон зависимости сил приложенных к телу от ускорения:

В инерциальной системе отсчёта произведение массы и ускорение равно равнодействующей силы (равнодействующая сила – геометрическая сумма всех сил, приложенных к телу) .

Масса тела, является коэффициентом пропорциональности данной зависимости. По определению ускорения () запишем закон в иной форме, а далее получается, что в числители правой части равенства является изменение импульса Δ p , поскольку Δ p=m Δv

Значит, второй закон можно записать в такой виде:

В таком виде Ньютон и записал свой второй закон.

Данный закон действителен только для скоростей, много меньших скорости света и в инерциальных системах отсчёта.

Третьей закон Ньютона

При соударении двух тел изменяют свою скорость, т.е. получают ускорения оба тела. Земля притягивает Луну и заставляет ее двигаться по криволинейной траектории; в свою же очередь Луна также притягивает Землю (сила всемирного тяготения).

Эти примеры показывают, что силы всегда возникают парами: если одно тело действует с силой на другое, то и второе тело действует на первое с такой же силой. Все силы носят взаимный характер.

Тогда можно сформулировать третий закон Ньютона:

Тела попарно действуют друг на друга с силами, направленными вдоль прямой, равными по модулю и противоположными по направлению.

Часто этот закон называют трудным законом, т.к. не понимают смысл этот закон. Для простоты понимания закона можно переформулировать данный закон («Действие равно противодействию») на « Сила, противодействующая равна силе действующей» , так как эти силы приложены к разным телам.

Даже падение тел строго подчиняется закону про­тиводействия. Яблоко надает на Землю оттого, что его притягивает земной шар; но точно с такой же силой и яблоко притягивает к себе всю нашу планету.

Для силы Лоренца третий закон Ньютона не выполняется.

Основные законы механики Ньютон сформулировал в своей книге «Математические начала натуральной философии».

Итак, можно сделать вывод, что все эти три закона Ньютона являются фундаментном классической механики; и каждый из законов вытекает в другой.