На любое действие есть противодействие закон. Законы механики ньютона

Изучение явлений природы на основании эксперимента возможно только при условии соблюдения всех этапов: наблюдение, гипотеза, эксперимент, теория. Наблюдение позволит выявить и сопоставить факты, гипотеза дает возможность дать им подробное научное пояснение, требующее экспериментального подтверждения. Проведение наблюдения за движением тел привело к интересному выводу: изменение скорости тела возможно только под действием другого тела.

К примеру, если быстро бежать по лестнице, то на повороте просто необходимо ухватиться за перила (изменение направления движения), либо приостановиться (изменением величины скорости), чтобы не столкнуться с противоположной стеной.

Наблюдения за аналогичными явлениями привело к созданию раздела физики, изучающего причины изменения скорости тел или их деформации.

Основы динамики

Ответить на сакраментальный вопрос о том, почему физическое тело движется тем или иным образом или покоится, призвана динамика.

Рассмотрим состояние покоя. Исходя из понятия можно сделать вывод: нет и не может быть абсолютно неподвижных тел. Любой предмет, будучи неподвижным по отношению к одному телу отсчета, движется относительно другого. К примеру, книга, лежащая на столе, неподвижна относительно стола, но если рассмотреть ее положение по отношению к проходящему человеку, то делаем естественный вывод: книга движется.

Поэтому рассматриваются в инерциальных системах отсчета. Что это такое?

Инерциальной называется система отсчета, в которой тело покоится или выполняет равномерное и при условии отсутствия воздействия на него иных предметов или объектов.

В приведенном выше примере система отсчета, связанная со столом, может быть названа инерциальной. Человек, движущийся равномерно и прямолинейно, может служить телом отсчета ИСО. Если его движение будет ускоренным, то связать с ним инерциальную СО нельзя.

По сути, такую систему можно соотнести с телами, жестко закрепленными на поверхности Земли. Однако сама планета не может служить телом отсчета для ИСО, так как равномерно вращается вокруг собственной оси. Тела на поверхности имеют центростремительное ускорение.

Что такое инерция?

Явление инерции напрямую связано с ИСО. Вспомните, что происходит, если движущийся автомобиль резко останавливается? Пассажиры подвергаются опасности, поскольку продолжают свое движение. Остановить его может кресло впереди либо ремни безопасности. Поясняют этот процесс инерцией пассажира. Так ли это?

Инерция - явление, предполагающее сохранение постоянной скорости тела при отсутствии воздействия на него других тел. Пассажир находится под действием ремней или кресел. Явление инерции здесь не наблюдается.

Объяснение кроется в свойстве тела, и, согласно ему, мгновенно изменить скорость того или иного предмета невозможно. Это - инертность. К примеру, инертность ртути в термометре позволяет опустить столбик, если мы встряхнем градусник.

Мерой инертности называют массу тела. При взаимодействии скорость быстрее меняется у тел с меньшей массой. Столкновение автомобиля с бетонной стеной для последней протекает практически бесследно. Автомобиль чаще всего претерпевает необратимые изменения: меняется скорость, происходит значительная деформация. Получается, что инертность бетонной стены значительно превышает инертность автомобиля.

Возможно ли в природе встретиться с явлением инерции? Условие, при котором тело находится без взаимосвязи с другими телами - глубокий космос, в котором движется космический корабль с выключенными двигателями. Но даже в этом случае гравитационный момент присутствует.

Основные величины

Изучение динамики на экспериментальном уровне предполагает проведение опыта с измерениями физических величин. Наиболее интересны:

  • ускорение как мера быстроты изменения скорости тел; обозначают ее буквой а, измеряют в м/с 2 ;
  • масса как мера инертности; обозначена литерой m, измеряется в кг;
  • сила как мера взаимного действия тел; обозначается чаще всего буквой F, измеряется в Н (ньютонах).

Взаимосвязь этих величин изложена в трех закономерностях, выведенных величайшим английским физиком. Законы Ньютона призваны объяснить сложности взаимодействия различных тел. А также процессы, ими управляющие. Именно понятия "ускорение", "сила", "масса" законы Ньютона связывают математическими соотношениями. Попробуем разобраться, что же это значит.

Действие только одной силы - явление исключительное. К примеру, искусственный спутник, движущийся по орбите вокруг Земли, находится под действием только силы притяжения.

Равнодействующая

Действие нескольких сил можно заменить одной силой.

Геометрическая сумма сил, воздействующих на тело, именуется равнодействующей.

Речь идет именно о геометрической сумме, поскольку сила - векторная величина, которая зависит не только от точки приложения, но и от направления действия.

К примеру, если необходимо передвинуть достаточно массивный шкаф, то можно пригласить друзей. Совместными усилиями достигается желаемый результат. Но можно пригласить только одного, очень сильного человека. Его усилие равно действию всех друзей. Сила, приложенная богатырем, может быть названа равнодействующей.

Законы движения Ньютона формулируются на основании понятия «равнодействующая».

Закон инерции

Начинают изучать законы Ньютона с наиболее часто встречающегося явления. Первый закон обычно называют законом инерции, поскольку он устанавливает причины равномерного прямолинейного движения или состояния покоя тел.

Тело перемещается равномерно и прямолинейно или покоится, если на него не осуществляют действия силы, либо это действие скомпенсировано.

Можно утверждать, что равнодействующая в этом случае равна нулю. В таком состоянии находится, к примеру, движущийся с постоянной скоростью автомобиль на прямолинейном участке дороги. Действие силы притяжения скомпенсировано силой а сила тяги двигателя по модулю равна силе сопротивления движению.

Люстра на потолке покоится, так как сила тяжести скомпенсирована силой натяжения ее креплений.

Скомпенсированными могут быть только те силы, которые приложены к одному телу.

Второй закон Ньютона

Равнодействующая сил, воздействующих на тело, определяется как произведение массы тела на приобретаемое под действием сил ускорение.

2 закон Ньютона (формула: F=ma), к сожалению, не устанавливает причинно-следственных связей между и динамики. Он не может с точностью указать, что является причиной появления ускорения тел.

Сформулируем иначе: ускорение, получаемое телом, прямо пропорционально равнодействующей сил и обратно пропорционально массе тела.

Так, можно установить, что изменение скорости происходит только в зависимости от силы, приложенной к нему, и массы тела.

2 закон Ньютона, формула которого может быть и такой: a = F/m, в векторном виде считают основополагающим, поскольку он дает возможность установить связь между разделами физики. Здесь, a - вектор ускорения тела, F - равнодействующая сил, m - масса тела.

Ускоренное движение автомобиля возможно, если сила тяги двигателей превышает силу сопротивления движению. С увеличением силы тяги возрастает и ускорение. Грузовые автомобили снабжаются двигателями большой мощности, ведь их масса значительно превышает массу легкового авто.

Болиды, созданные для скоростных гонок, облегчаются таким образом, что на них закрепляется минимум необходимых деталей, а мощность двигателей увеличивается до возможных пределов. Одной из важнейших характеристик спортивных авто является время разгона до 100 км/ч. Чем меньшее этот интервал времени, тем лучше скоростные свойства болида.

Закон взаимодействия

Законы Ньютона, основанные на силах природы, утверждают, что любое взаимодействие сопровождается появлением пары сил. Если шар висит на нити, то испытывает ее действие. При этом нить также растягивается под действием шара.

Завершает законы Ньютона формулировка третьей закономерности. Вкратце это звучит так: действие равно противодействию. Что это значит?

Силы, с которыми тела воздействуют друг на друга, равны по величине, противоположны по направлению и направлены вдоль линии, соединяющей центры тел. Интересно, что скомпенсированными их назвать нельзя, ведь действуют они на разные тела.

Применение законов

Знаменитая задача «Конь и телега» может поставить в тупик. Конь, запряженный в упомянутую повозку, сдвигает ее с места. В соответствии с третьим законом Ньютона, эти два объекта действуют друг на друга с равными по модулю силами, но на практике лошадь может сдвинуть телегу, что не укладывается в основы закономерности.

Решение найдется, если учесть, что эта система тел не замкнута. Дорога оказывает свое действие на оба тела. Сила трения покоя, действующая на копыта коня, превышает по значению силу трения качения колес телеги. Ведь момент движения начинается с попытки сдвинуть повозку. Если положение изменится, то конь ни при каких условиях не сдвинет её с места. Его копыта будут проскальзывать по дороге, и движения не будет.

В детстве, катая друг друга на санках, каждый мог столкнуться с таким примером. Если на санки сядут два-три ребенка, то усилий одного явно недостаточно, чтобы сдвинуть их с места.

Падение тел на поверхность земли, объясняемое Аристотелем («Каждое тело знает свое место») можно опровергнуть на основании вышеизложенного. Предмет движется к земле под действием такой же силы, что и Земля к нему. Сравнив их параметры намного больше массы тела), в соответствии со вторым законом Ньютона, утверждаем, что ускорение предмета во столько же раз больше ускорения Земли. Мы наблюдаем именно изменение скорости тела, Земля не смещается с орбиты.

Границы применимости

Современная физика законы Ньютона не отрицает, а лишь устанавливает границы их применимости. До начала XX века физики не сомневались в том, что эти законы объясняют все явления природы.

1, 2, 3 закон Ньютона полностью выявляет причины поведения макроскопических тел. Движение объектов с незначительными скоростями полностью описывается этими постулатами.

Попытка пояснить на их основании движение тел со скоростями, близкими к обречена на провал. Полное изменение свойств пространства и времени при этих скоростях не позволяет использовать динамику Ньютона. Кроме того, законы меняют свой вид в неинерциальных СО. Для их применения вводится понятие силы инерции.

Пояснить движение астрономических тел, правила их расположения и взаимодействия могут законы Ньютона. Закон всемирного тяготения вводится с этой целью. Увидеть же результат притяжения малых тел невозможно, ведь сила мизерна.

Взаимное притяжение

Известна легенда, согласно которой господина Ньютона, сидевшего в саду и наблюдавшего падение яблок, посетила гениальная идея: объяснить движение предметов вблизи поверхности Земли и движение на основании взаимного притяжения. Это не так далеко от истины. Наблюдения и точный расчет касались не только падения яблок, но и перемещения Луны. Закономерности этого движения приводят к выводам, что сила притяжения возрастает с увеличением масс взаимодействующих тел и уменьшается с увеличением расстояния между ними.

Опираясь на второй и третий законы Ньютона, закон всемирного тяготения формулируют следующим образом: все тела во вселенной притягиваются друг к другу с силой, направленной вдоль линии, соединяющей центры тел, пропорциональной массам тел и обратно пропорциональной квадрату расстояния между центрами тел.

Математическая запись: F = GMm/r 2 , где F - сила притяжения, M, m - массы взаимодействующих тел, r - расстояние между ними. Коэффициент пропорциональности (G = 6.62 х 10 -11 Нм 2 /кг 2) получил название гравитационной постоянной.

Физический смысл: эта постоянная равна силе притяжения между двумя телами массами по 1 кг на расстоянии 1 м. Понятно, что для тел небольших масс сила столь незначительна, что ею можно пренебречь. Для планет, звезд, галактик сила притяжения настолько огромна, что полностью определяет их движение.

Именно закон притяжения Ньютона утверждает, что для запуска ракет необходимо топливо, способное создать такую реактивную тягу, чтобы преодолеть влияние Земли. Скорость, необходимая для этого - первая космическая скорость, равная 8 км/с.

Современная технология изготовления ракет позволяет запускать беспилотные станции как искусственные спутники Солнца к другим планетам, чтобы их исследовать. Скорость, развиваемая таким аппаратом, - вторая космическая скорость, равная 11 км/с.

Алгоритм применения законов

Решение задач динамики подчиняется определенной последовательности действий:

  • Провести анализ задачи, выявить данные, вид движения.
  • Выполнить рисунок с указанием всех сил, действующих на тело, и направления ускорения (при его наличии). Выбрать систему координат.
  • Записать первый или второй законы, в зависимости от наличия ускорения тела, в векторной форме. Учесть все силы (равнодействующая сила, законы Ньютона: первый, если скорость тела не меняется, второй, если есть ускорение).
  • Уравнение переписать в проекциях на выбранные оси координат.
  • Если полученной системы уравнений недостаточно, то записать иные: определения сил, уравнения кинематики и т. п.
  • Решить систему уравнений относительно искомой величины.
  • Выполнить проверку размерностей, чтобы определиться с правильностью полученной формулы.
  • Вычислить.

Обычно этих действий вполне достаточно для решения любой стандартной задачи.

Помни!!!

  • В основе динамики материальной точки лежат три закона Ньютона.
  • Первый закон Ньютона - закон инерции
  • Под телом подразумевают материальную точку, движение которой рассматривают в инерциальной системе отсчета.

1. Формулировка

«Существуют такие инерциальные системы отсчёта, относительно которых тело, если на него не действуют другие силы (либо действие других сил компенсируется), находится в покое либо движется равномерно и прямолинейно».

2. Определение

Первый закон Ньютона - всякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит её изменить это состояние.

Первый закон Ньютона - закон инерции (Галилей вывел закон инерции)

Закон инерции : Если на тело нет внешних воздействий, то данное тело сохраняет состояние покоя или равномерного прямолинейного движения относительно Земли.

Инерциальная система отсчёта (ИСО) – система, которая либо покоится, либо движется равномерно и прямолинейно относительно какой-то другой инерциальной системы. Т.е. система отсчета, в которой выполняется 1-й закон Ньютона.

  • Масса тела – количественная мера его инертности. В СИ она измеряется в килограммах.
  • Сила – количественная мера взаимодействия тел. Сила – векторная величина и измеряется в ньютонах (Н). Сила, которая производит на тело такое же действие, как несколько одновременно действующих сил, называется равнодействующей этих сил.

3. Формула

Формулы нет . Формула первого закона Ньютона не существует.

Первый закон Ньютона содержится 2 важных утверждения:

  1. все тела обладают свойством инерции;
  2. инерциальные системы отсчета существуют.

Это интересно .

Первый закон Ньютона : существуют системы отсчета, в которых любое изолированное не подвергающееся действию внешних сил тело сохраняет свое состояние покоя или равномерного прямолинейного движения. Такие системы отсчета называются инерциальными.
Первый закон Ньютона часто называют законом инерции, поскольку движение, не поддерживаемое никаким воздействием, - это движение по инерции. При формулировке закона инерции И. Ньютон опирался на труды Г. Галилея, который первым понял ошибочность утверждения, что тело, на которое ничто не действует, может только покоиться. Галилей показал, что такое тело может либо покоиться, либо двигаться с постоянной скоростью.
Второй закон Ньютона: под действием силы F тело массой т приобретает такое ускорение а, что произведение массы на ускорение будет равно действующей силе, т. е.

Второй закон Ньютона показывает, что причиной изменения скорости тела является действие на него окружающих тел.

Формула второго закона ньютона:

где Ар - изменение импульса тела за время At, вызванное действием силы F. Формула (1) справедлива лишь в том случае, когда масса тела т не изменяется, в то время как (2) верна всегда. Видно, что при т = const формула (2) обращается в формулу (1):

Учитывая принцип суперпозиции сил (равнодействующая нескольких сил равна их векторной сумме), второй закон Ньютона можно записать в виде:
ma = F1 + ... + Fn.

Третий закон Ньютона : при взаимодействии двух тел силы, с которыми они действуют друг на друга, равны по модулю и противоположны, по направлению, т. е.
F12 = - F21
Силы, о которых идет речь в третьем законе Ньютона, приложены к разным телам, но всегда имеют одну природу.
Примерами таких пар сил могут служить: силы гравитационного взаимодействия двух тел; вес тела и сила реакции опоры; кулоновские силы и др.
Являясь основой классической механики, законы Ньютона описывают взаимодействия макроскопических тел, участвующих в нерелятивистских движениях (их скорости много меньше скорости света). При этом тела рассматриваются как материальные точки, а движение описывается относительно инерциальных систем отсчета.

Говорится о поведении тела, изолированного от воздействия других тел. Второй закон говорит о прямо противоположной ситуации. В нем рассматриваются случаи, когда тело или несколько тел воздействуют на данное.

Оба эти закона описывают поведение одного конкретного тела. Но во взаимодействии всегда участвуют минимум два тела. Что будет происходить с обоими этими телами? Как описать их взаимодействие? Анализом этой ситуации и занялся Ньютон после формулировки своих первых двух законов. Займемся и мы такими же изысканиями.

Взаимодействие двух тел

Мы знаем, что при взаимодействии воздействуют друг на друга оба тела. Не бывает такого, чтобы одно тело толкнуло другое, а второе в ответ никак не отреагировало бы. Такое может происходить среди по-разному воспитанных людей, но никак не в природе.

Мы знаем, что если мы пинаем мяч, то мяч в ответ пинает нас. Другое дело, что мяч имеет намного меньшую массу, чем тело человека, и потому его воздействие практически не ощутимо.

Однако, если вы попробуете пнуть тяжелый железный мяч, то живо ощутите это ответное воздействие. Фактически, мы каждый день по многу раз пинаем очень и очень тяжелый мяч нашу планету. Мы толкаем ее каждым своим шагом, только при этом отлетает не она, а мы. А все потому, что планета в миллионы раз превосходит нас по массе.

Соотношение сил во взаимодействии между телами

Так что из этих рассуждений видно, что при взаимодействии двух тел, не только первое действует на второе с некоторой силой, но и второе в ответ действует на первое также с некоторой силой. Возникает вопрос: а как соотносятся эти силы? Какая из них больше, какая меньше?

Для этого необходимо проделать некоторые измерения. Потребуются два динамометра, но в домашних условиях их вполне могу заменить два безмена. Они измеряют вес, а вес это тоже сила, только выраженная в единицах массы в случае безмена. Поэтому, если у вас есть два безмена, то проделайте следующее.

Один из них оденьте колечком на что-то неподвижное, например, на гвоздь в стене, а второй соедините с первым крючками. И потяните за колечко второго безмена. Проследите за показаниями обоих приборов. Каждый из них покажет силу, с которой на него воздействует другой безмен.

И хотя мы тянем только за один из них, окажется, что показания обоих, как на очной ставке, будут совпадать. Получается, что сила, с которой мы воздействуем вторым безменом на первый, равна силе, с которой первый безмен воздействует на второй.

Третий закон Ньютона: определение и формула

Сила действия равна силе противодействия . В этом и состоит суть третьего закона Ньютона. Определение его таково: силы, с которыми два тела действуют друг на друга, равны по величине и противоположны по направлению. Третий закон Ньютона можно записать в виде формулы:

F_1 = - F_2,

Где F_1 и F_2 силы действия друг на друга соответственно первого и второго тела.

Справедливость третьего закона Ньютона была подтверждена многочисленными экспериментами. Этот закон справедлив как для случая, когда одно тело тянет другое, так и для случая, когда тела отталкиваются. Все тела во Вселенной взаимодействуют друг с другом, подчиняясь этому закону.

В качестве первого из трех законов. Поэтому этот закон называют первым законом Ньютона .

Первый закон механики , или закон инерции был сформулирован Ньютоном следующим образом:

Любое тело удерживается в состоянии покоя или равномерного прямолинейного движения, пока под действием приложенных сил не изменяет это состояние .

В окружении любого тела, покоится оно или движется, есть другие тела, некоторые из которых или все как-то действуют на тело, влияют на состояние его движения. Чтобы выяснить влияние окружающих тел, надо исследовать каждый отдельный случай.

Рассмотрим какое-либо покоящееся тело, не обладающее ускорением, а скорость постоянна и равна нулю. Допустим, это будет шарик, подвешенный на резиновом шнуре. Он находится в покое относительно Земли. Около шарика множество различных тел: шнур, на котором он висит, множество предметов в комнате и других помещениях и, конечно, Земля. Однако, действие всех этих тел на шарик не одинаково. Если, например, убрать мебель в комнате, это не окажет какого-либо влияния на шарик. Но если перерезать шнур, шарик под влиянием Земли начнет падать вниз с ускорением. Но пока шнур не был перерезан, шарик находился в покое. Этот простой опыт показывает, что из всех тел, окружающих шарик, только два заметно влияют на него: резиновый шнур и Земля. Их совместное влияние и обеспечивает состояние покоя шарика. Стоило устранить одно из этих тел — шнур, и состояние покоя нарушилось. Если бы возможно было убрать Землю, это тоже нарушило бы покой шарика: он стал бы двигаться в противоположном направлении.

Отсюда приходим к выводу, что действия на шарик двух тел — шнура и Земли, компенсируют (уравновешивают) друг друга. Когда говорят, что действия двух или нескольких тел компенсируют друг друга, то это значит, что результат их совместного действия такой же, как если бы этих тел вовсе не было.

Рассмотренный пример, как и другие подобные примеры, позволяют сделать следующий вывод: если действия тел компенсируют друг друга, то тело под влиянием этих тел находится в состоянии покоя.

Таким образом, мы пришли к одному из основных законов механики , который называют первым законом Ньютона :

Существуют такие системы отсчета, относительно которых движущиеся тела сохраняют свою скорость постоянной, если на них не действуют другие тела или действие других тел компенсируется.

Однако, как выяснилось со временем, первый закон Ньютона выполняется только в инерциальных системах отсчета . Поэтому с точки зрения современных представлений закон Ньютона формулируют следующим образом:

Системы отсчета, относительно которых свободное тело при компенсации внешних воздействий движется равномерно и прямолинейно, называют инерциальными системами отсчета .

Свободным телом в этом случае называют тело, на которое другие тела не оказывают воздействия.

Необходимо помнить, что в первом законе Ньютона рассматриваются тела, которые могут быть представлены в качестве материальных точек.