Определение белка (унифицированный метод Брандберга—Робертса—Стольникова). Белок в моче, лабораторные исследования

В основу метода положена кольцевая проба Геллера, заключающаяся в том, что на границе азотной кислоты и мочи при наличии белка происходит его коагуляция и появляется белое кольцо.

Необходимый реактив

30%-ный раствор азотной кислоты (относительная плотность 1,2) или реактив Ларионовой.

Приготовление реактива Ларионовой: 20—30 г хлорида натрия растворяют при нагревании в 100 мл дистиллированной воды, дают остыть, фильтруют. К 99 мл фильтрата приливают 1 мл концентрированной азотной кислоты.

Ход исследования

В пробирку наливают 1—2 мл азотной кислоты (или реактива Ларионовой) и осторожно, по стенке пробирки, наслаивают такое же количество профильтрованной мочи. Появление тонкого белого кольца на границе двух жидкостей между 2 и 3-й минутой указывает на наличие белка в концентрации примерно 0,033 г/л. Если кольцо появляется раньше 2 мин после наслаивания, мочу следует развести водой и провести повторное наслаивание уже разведенной мочи. Степень разведения мочи подбирают в зависимости от вида кольца, т.е. его ширины, компактности и времени появления.

При нитевидном кольце, появившемся ранее 2 мин, мочу разводят в 2 раза, при широком — в 4 раза, при компактном — в 8 раз и т.д. Концентрацию белка при этом вычисляют путем умножения 0,033 на степень разведения и выражают в граммах на 1 л (г/л).

Небольшие количества белка обнаруживаются в суточной моче у здоровых лиц. Однако такие небольшие концентрации его не удается выявить с помощью обычных методов исследования. Выделение более значительных количеств белка, при которых обычные качественные пробы на белок в моче становятся положительными, называются протеинурией. Различают почечную (истинную) и внепочечную (ложную) протеинурию. При почечной протеинурии белок в мочу проникает непосредственно из крови вследствие увеличения фильтрации его клубочками почки или снижения канальцевой реабсорбции.

Почечная (истинная) протеинурия

Почечная (истинная) протеинурия бывает функциональной и органической. Среди функциональной почечной протеинурии наиболее часто наблюдаются следующие ее виды:

Физиологическая протеинурия новорожденных, которая исчезает на 4— 10-й день после рождения, а у недоношенных несколько позже;
- ортостатическая альбуминурия, которая характерна для детей в возрасте 7—18 лет и появляется только в вертикальном положении тела;
- транзиторная (инсультная) альбуминурия, причиной которой могут быть различные заболевания органов пищеварения, тяжелая анемия, ожоги, травмы или физиологические факторы: тяжелая физическая нагрузка, переохлаждение, сильные эмоции, обильная, богатая белком пища и др.

Органическая (почечная) протеинурия наблюдается вследствие прохождения белка из крови через поврежденные участки эндотелия почечных клубочков при заболеваниях почек (гломерулонефрит, нефроз, нефросклероз, амилоидоз, нефропатия беременных), расстройствах почечной гемодинамики (почечная венная гипертензия, гипоксия), трофических и токсических (в том числе лекарственных) воздействиях на стенки капилляров клубочков.

Внепочечная (ложная) протеинурия

Внепочечная (ложная) протеинурия, при которой источником белка в моче является примесь лейкоцитов, эритроцитов, бактерий, клеток уротелия. наблюдается при урологических заболеваниях (мочекаменная болезнь, туберкулез почек, опухоли почки и мочевых путей и др.).

Определение белка в моче

Большинство качественных и количественных методов определения белка в моче основаны на его коагуляции в объеме мочи или на границе сред (мочи и кислоты).

Среди качественных методов определения бедка в моче наибольшее распространение получили унифицированная проба с сульфосалициловой кислотой и кольцевая проба Геллера.

Унифицированная проба с сульфасалициловой кислотой проводится следующим образом. В 2 пробирки наливают по 3 мл профильтрованной мочи. В одну из них прибавляют 6—8 капель 20 % раствора сульфасалициловой кислоты. На темном фоне сравнивают обе пробирки. Помутнение мочи в пробирке с сульфасалициловой кислотой указывает на наличие белка. Перед исследованием необходимо определить реакцию мочи, и если она щелочная, то подкислить 2—3 каплями 10 % раствора уксусной кислоты.

Проба Геллера основана на том, что при наличии белка в моче на границе азотной кислоты и мочи происходит его коагуляция и появляется белое кольцо. В пробирку наливают 1—2 мл 30 % раствора азотной кислоты и осторожно по стенке пробирки наслаивают точно такое же количество профильтрованной мочи. Появление белого кольца на границе двух жидкостей указывает на наличие белка в моче. Следует помнить, что иногда белое кольцо образуется при наличии большого количества уратов, но в отличие от белкового кольца оно появляется несколько выше границы между двумя жидкостями и растворяется при нагревании [Плетнева Н.Г., 1987].

Из количественных методов наиболее часто применяются:

1) унифицированный метод Брандберга—Робертса—Стольникова, в основу которого положена кольцевая проба Геллера;
2) фотоэлектроколориметрический метод количественного определения белка в моче по помутнению, образующемуся при добавлении сульфасалициловой кислоты;
3) биуретовый метод.

Выявление белка в моче упрощенным ускоренным методом проводят колориметрическим методом с помощью индикаторной бумаги, которую выпускают фирмы «Lachema» (Словакия), «Albuphan», «Ames» (Англия), «Albustix», «Boehringer» (Германия), «Comburtest» и др. Метод заключается в погружении в мочу специальной бумажной полоски, пропитанной тетрабромфеноловым синим и цитратным буфером, которая меняет свой цвет от желтого до синего в зависимости от содержания белка в моче. Ориентировочно концентрацию белка в исследуемой моче определяют с помощью стандартной шкалы. Для получения правильных результатов необходимо соблюдать следующие условия. рН мочи должна быть в пределах 3,0—3,5; при слишком щелочной моче (рН 6,5) будет получен ложноположительный результат, а при слишком кислой моче (рН 3,0) — ложноотрицательный.

Бумага должна находиться в контакте с исследуемой мочой не дольше, чем указано в инструкции, в противном случае тест даст ложноположительную реакцию. Последнюю также наблюдают и при содержании в моче большого количества слизи. Чувствительность различных видов и серий бумаги может быть различной, поэтому к количественной оценке белка в моче этим методом следует относиться осторожно. Определение его количества в суточной моче при помощи индикаторной бумаги невозможно [Плетнева Н.Г., 1987]

Определение суточной протеинурии

Существует несколько способов определения количества белка, выделившегося с мочой за сутки. Наиболее простым является метод Брандберга —Робертса—Стольникова.

Методика. 5-10 мл тщательно перемешанной суточной мочи наливают в пробирку и осторожно по стенкам ее добавляют 30 % раствор азотной кислоты. При наличии белка в моче в количестве 0,033 % (т.е. 33 мг на 1 л мочи) через 2-3 мин появляется тонкое, но четко видимое белое кольцо. При меньшей его концентрации проба отрицательная. При большем содержании белка в моче его количество определяют путем многократных разведений мочи дистиллированной водой до тех пор, пока не перестанет образовываться кольцо. В последней пробирке, в которой еще видно кольцо, концентрация белка будет составлять 0,033 %. Умножив 0,033 на степень разведения мочи, определяют содержание белка в 1 л неразведенной мочи в граммах. Затем рассчитывают содержание белка в суточной моче по формуле:

К=(х·V)/1000

Где К — количество белка в суточной моче (г); х — количество белка в 1 л мочи (г); V — количество мочи, выделенное за сутки (мл).

В норме в течение суток с мочой выделяется от 27 до 150 мг (в среднем 40—80 мг) белка.

Указанная проба позволяет определить в моче только мелкодисперсные белки (альбумины). Более точные количественные методы (колориметрический метод Кьельдаля и др.) довольно сложны и требуют специальной аппаратуры.

При почечной протеинурии с мочой выделяются не только альбумины, но и другие виды белка. Нормальная протеинограмма (по Зейцу и соавт., 1953) имеет следующее процентное содержание: альбуминов — 20 %, α 1 -глобулинов — 12 %, α 2 -глобулинов — 17 %, γ-глобулинов — 43 % и β-глобулинов — 8 %. Отношение альбуминов к глобулинам изменяется при различных заболеваниях почек, т.е. нарушается количественное соотношение между белковыми фракциями.

Наиболее распространенными методами фракционирования уропротеинов являются следующие: высаливание нейтральными солями, электрофоретическое фракционирование, иммунологические методы (реакция радиальной иммунодиффузии по Манчини, иммуноэлектрофоретический анализ, преципитационный иммуноэлектрофорез), хроматография, гель-фильтрация, а также ультрацентрифугирование.

В связи с внедрением методов фракционирования уропротеинов, основанных на изучении электрофоретической подвижности, вариабильности молекулярной массы, размеров и формы молекул уропротеинов, появилась возможность выделять характерные для того или иного заболевания типы протеинурии, изучать клиренсы индивидуальных плазменных белков. К настоящему времени в моче идентифицировано свыше 40 плазменных белков, В том числе в нормальной моче 31 плазменный белок .

Селективная протеинурия

В последние годы появилось понятие селективности протеинурии. В 1955 г. Hardwicke и Squire сформулировали понятие «селективная» и «неселективная» протеинурия, определив, что фильтрация плазменных белков в мочу подчиняется определенной закономерности: чем больше молекулярная масса белка, экскретируемого в мочу, тем меньше его клиренс и тем ниже концентрация его в окончательной моче. Протеинурия, соответствующая этой закономерности, является селективной в отличие от неселективной, для которой характерным является извращение выведенной закономерности.

Обнаружение в моче белков с относительно большой молекулярной массой свидетельствует об отсутствии избирательности почечного фильтра и выраженном его поражении. В этих случаях говорят о низкой селективности протеинурии. Поэтому в настоящее время широкое распространение получило определение белковых фракций мочи с использованием методов электрофореза в крахмальном и полиакриламидном геле. По результатам этих методов исследования можно судить о селективности протеинурии.

По данным В.С.Махлиной (1975), наиболее оправданным является определение селективности протеинурии путем сравнения клиренсов 6—7 индивидуальных белков плазмы крови (альбумина, транеферрина, α 2 - макроглобулина, IgA, IgG, IgM) с использованием точных и специфичных количественных иммунологических методов реакции радиальной иммунодиффузии по Манчини, иммуноэлектрофоретического анализа и преципитального иммуноэлектрофореза. Степень селективности протеинурии определяют по индексу селективности, представляющего собой отношение сравниваемого и эталонного белков (альбумина).

Изучение клиренсов индивидуальных плазменных белков позволяет получить достоверные сведения о состоянии фильтрационных базальных мембран клубочков почки. Связь между характером экскретируемых в мочу белков и изменениями базальных мембран клубочков настолько выражена и постоянна, что по уропротеинограмме можно косвенно судить о патофизиологических изменениях в клубочках почек. В норме средний размер пор гломерулярной базальной мембраны составляет 2,9—4 А° НМ, которые могут пропускать белки, имеющие молекулярную массу до 10 4 (миоглобулин, кислый α 1 - гликопротеин, легкие цепи иммуноглобулинов, Fc и Fab — фрагменты IgG, альбумин и трансферрин).

При гломерулонефрите, нефротическом синдроме размеры пор в базальных мембранах клубочков увеличиваются, в связи с чем базальная мембрана становится проницаемой для белковых молекул большого размера и массы (церулоплазмин, гаптоглобин, IgG, IgA и др.). При крайней степени повреждения клубочков почек в моче появляются гигантские молекулы белков плазмы крови (α 2 -макроглобулин, IgM и β 2 -липопротеин).

Определяя белковый спектр мочи, можно сделать заключение о преимущественном поражении тех или иных участков нефрона. Для гломерулонефрита с преимущественным поражением гломерулярных базальных мембран характерно наличие в моче крупно- и среднемолекулярных белков. Для пиелонефрита с преимущественным поражением базальных мембран канальцев характерны отсутствие крупномолекулярных и наличие повышенных количеств средне- и низкомолекулярных белков.

β 2 -Микроглобулин

Помимо общеизвестных белков, таких как альбумин, иммуноглобулины, липопротеины. фибриноген, трансферрин, в моче содержатся плазменные белки-микропротеины, среди которых клинический интерес представляет β 2 -микроглобулин, открытый Berggard и Bearn в 1968 г. Имея низкую молекулярную массу (относительная молекулярная масса 1800), он свободно проходит через клубочки почки и почти полностью реабсорбируется в проксимальных канальцах. Это позволяет использовать количественное определение β 2 -микроглобулина в крови и моче для определения клубочковой фильтрации и способности почек к резорбции протеинов в проксимальных канальцах.

Концентрацию этого белка в плазме крови и моче определяют радиоиммунологическим методом с помощью стандартного набора «Phade-bas β 2 -mikroiest» (фирма «Pharmaсia», Швеция). В сыворотке крови здоровых людей содержится в среднем 1,7 мг/л (колебания от 0,6 до 3 мг/л), в моче — в среднем 81 мкг/л (максимально 250 мкг/л) β 2 -микроглобулина. Превышение его в моче свыше 1000 мкг/л — явление патологическое. Содержание β 2 -микроглобулина в крови увеличивается при заболеваниях, сопровождающихся нарушением клубочковой фильтрации, в частности при остром и хроническом гломерулонефрите, поликистозе почек, нефросклерозе, диабетической нефропатии, острой почечной недостаточности.

Концентрация β 2 -микроглобулина в моче повышается при заболеваниях, сопровождающихся нарушением реабсорбционной функции канальцев, что приводит к увеличению экскреции его с мочой в 10—50 раз, в частности, при пиелонефрите, ХПН, гнойной интоксикации и др. Характерно, что при цистите в отличие от пиелонефрита не наблюдается увеличения концентрации β 2 -микроглобулина в моче, что может быть использовано для дифференциальной диагностики этих заболеваний. Однако при интерпретации результатов исследования надо учитывать, что любое повышение температуры всегда сопровождается увеличением экскреции β 2 -микроглобулина с мочой.

Средние молекулы крови и мочи

Средние молекулы (СМ), иначе называемые белковыми токсинами, представляют собой вещества с молекулярной массой 500—5000 дальтон. Физическая структура их неизвестна. В состав СМ входят по меньшей мере 30 пептидов: окситоцин, вазопрессин, ангиотензин, глюкагон, адренокортикотропный гормон (АКТГ) и др. Избыточное накопление СМ наблюдается при снижении функции почек и содержании в крови большого количества деформированных белков и их метаболитов. Они обладают разнообразным биологическим действием и нейротоксичны, вызывают вторичную иммунодепрессию, вторичную анемию, угнетают биосинтез белка и эритропоэз, тормозят активность многих ферментов, нарушают течение фаз воспалительного процесса.

Уровень СМ в крови и моче определяют скрининговым тестом, а также путем спектрофотометрии в ультрафиолетовой зоне по длине волны 254 и 280 мм на спектрофотометре ДИ-8Б, а также динамической спектрофотометрии с компьютерной обработкой в диапазоне волн 220—335 нм на том же спектрометре фирмы Beckman. За норму принимают содержание СМ в крови, равное 0,24 ± 0,02 усл. ед., а в моче — 0,312 ± 0,09 усл. ед.
Будучи нормальными продуктами жизнедеятельности организма, они удаляются из него в норме ночками путем гломерулярной фильтрации на 0,5 %; 5 % их утилизируется другим путем. Все фракции СМ подвергаются канальцевой реабсорбции.

Неплазменные (тканевые) уропротеины

Кроме белков плазмы крови, в моче могут быть неплазменные (тканевые) протеины. По данным Buxbaum и Franklin (1970), неплазменные белки составляют приблизительно 2/3 всех биоколлоидов мочи и значительную часть уропротеинов при патологической протеинурии. Тканевые белки попадают в мочу непосредственно из почек или органов, анатомически связанных с мочевыми путями, или попадают из других органов и тканей в кровь, а из нее через базальные мембраны клубочков почки — в мочу. В последнем случае экскреция в мочу тканевых протеинов происходит аналогично выведению плазменных белков различной молекулярной массы. Состав неплазменных уропротеинов чрезвычайно разнообразен. Среди них гликопротеины, гормоны, антигены, ферменты (энзимы).

Тканевые протеины в моче выявляют с помощью обычных методов белковой химии (ультрацентрифугирование, гель-хроматография, различные варианты электрофореза), специфических реакций на ферменты и гормоны и иммунологических методов. Последние позволяют также определить концентрацию неплазменного уропротеина в моче и в ряде случаев определить тканевые структуры, ставшие источником его появления. Основным методом выявления в моче неплазменного белка является иммунодиффузионный анализ с антисывороткой, полученной иммунизацией экспериментальных животных мочой человека и истощенной (адсорбированной) в последующем белками плазмы крови.

Исследование ферментов в крови и моче

При патологическом процессе наблюдаются глубокие нарушения жизнедеятельности клеток, сопровождающиеся выходом внутриклеточных ферментов в жидкостные среды организма. Энзимодиагностика базируется на определении ряда ферментов, выделившихся из клеток пораженных органов и не свойственных сыворотке крови.
Исследования нефрона человека и животных показали, что в отдельных его частях имеется высокая ферментативная дифференциация, тесно связанная с функциями, которые выполняет каждый отдел. В клубочках почки содержится относительно небольшое количество различных энзимов.

Клетки почечных канальцев, особенно проксимальных отделов, содержат максимальное количество энзимов. Высокая их активность наблюдается в петле Генле, прямых канальцах и собирательных трубочках. Изменения активности отдельных энзимов при различных заболеваниях почек зависят от характера, остроты и локализации процесса. Они наблюдаются до появления морфологических изменений в почках. Поскольку содержание различных ферментов четко локализовано в нефроне, определение того или иного фермента в моче может способствовать топической диагностике патологического процесса в почках (клубочки, канальцы, корковый или мозговой слой), дифференциальной диагностике почечных заболеваний и определению динамики (затухание и обострение) процесса в почечной паренхиме.

Дли дифференциальной диагностики заболеваний органов мочеполовой системы применяют определение активности в крови и моче следующих ферментов: лактатдегидрогеназы (ЛДГ), лейцинаминопептидазы (ЛАП), кислой фосфатазы (КФ), щелочной фосфатазы (ЩФ), β-глюкуронидазы, глютамино-щавелевоуксусной трансаминазы (ГЩТ), альдолазы, трансамидиназы и др. Активность ферментов в сыворотке крови и в моче определяют с помощью биохимических, спектрофотометрических, хроматографических, флуориметрических и хемилюминесцентных методов.

Энзимурия при заболеваниях почек более выражена и закономерна, чем энзимемия. Она особенно сильно выражена в острой стадии заболевания (острый пиелонефрит, травма, распад опухоли, инфаркт почки и т.д.). При этих заболеваниях обнаруживается высокая активность трансамидиназы, ЛДГ, ЩФ и КФ, гиалуронидазы, ЛАП, а также таких неспецифических энзимов, как ГЩТ, каталаза [Полянцева Л.Р., 1972].

Селективная локализация ферментов в нефроне при обнаружении ЛАП и ЩФ в моче позволяет с уверенностью говорить об острых и хронических заболеваниях почек (острая почечная недостаточность, некроз почечных канальцев, хронический гломерулонефрит) [Шеметов В.Д., 1968]. По данным А.А.Карелина и Л.Р.Полянцевой (1965), трансамидиназа содержится лишь в двух органах — почке и поджелудочной железе. Она является митохондриальным ферментом почек и в норме в крови и моче отсутствует. При различных заболеваниях почек трансамидиназа появляется в крови и в моче, а при поражении поджелудочной железы — только в крови.

Дифференциальным тестом в диагностике гломерулонефрита и пиелонефрита Krotkiewski (1963) считает активность ЩФ в моче, повышение которой более характерно для пиелонефрита и диабетического гломерулосклероза, чем для острого и хронического нефрита. Нарастающая в динамике амилаземия при одновременном снижении амилазурии может указывать на нефросклероз и сморщивание почки, ЛАП имеет наибольшее значение при патологических изменениях в клубочках и извитых канальцах почки, поскольку содержание ее в этих отделах нефрона более высокое [Шепотиновский В.П. и др., 1980]. Для диагностики волчаночного нефрита рекомендуется определение β-глюкуронидазы и КФ [Приваленко М.Н. и др., 1974].

При оценке роли энзимурии в диагностике заболеваний почек следует учитывать следующие положения. Энзимы, будучи по своей природе белками, при малой молекулярной массе могут проходить через неповрежденные клубочки, определяя так называемую физиологическую энзимурию. Среди этих энзимов постоянно определяются в моче α-амилаза (относительная молекулярная масса 45 ООО) и уропепсин (относительная молекулярная масса 38000).

Наряду с низкомолекулярными энзимами в моче здоровых лиц могут быть обнаружены в небольшой концентрации и другие энзимы: ЛДГ, аспартат- и аланинаминотрансферазы, ЩФ и КФ, мальтаза, альдолаза, липаза, различные протеазы и пептидазы, сульфатаза, каталаза, рибонуклеаза, пероксидаза .

Высокомолекулярные энзимы с относительной молекулярной массой больше 70000-100000, по мнению Richterich (1958) и Hess (1962), могут проникать в мочу лишь при нарушении проницаемости клубочкового фильтра. Нормальное содержание ферментов в моче не позволяет исключить патологический процесс в почке при окклюзии мочеточника. При эпзимурии возможен выход энзимов не только из самих почек, но и из других паренхиматозных органов, клеток слизистых оболочек мочевых путей, предстательной железы, а также форменных элементов мочи при гематурии или лейкоцитурии.

Большинство энзимов неспецифично по отношению к почке, поэтому откуда происходят энзимы, обнаруженные в моче здоровых и больных, установить трудно. Однако степень энзимурии даже дли неспецифичных энзимов при поражении почек бывает выше нормы или той, которая наблюдается при заболеваниях других органов. Более ценную информацию может дать комплексное исследование в динамике ряда ферментов, особенно органоспецифичных, таких как трансаминаза.

В решении вопроса о почечном происхождении энзима в моче помогает исследование изоэнзимов с выявлением фракций, типичных для изучаемого органа. Изоэнзимы — это энзимы, изогенные по действию (катализируют одну и ту же реакцию), но гетерогенные по химической структуре и другим свойствам. Каждая ткань имеет характерный для нее изоэнзимный спектр. Ценными методами разделения изоэнзимов являются электрофорез в крахмальном и полиакриламидном геле, а также ионообменная хроматография.

Белок Бенс-Джонса

При миеломной болезни и макроглобулинемии Вальденстрема в моче обнаруживают белок Бенс-Джонса. Метод обнаружения названного белка в моче основан на реакции термопреципитации. Применявшиеся ранее методы, с помощью которых оценивают растворение этого белка при температуре 100 °С и повторное осаждение при последующем охлаждении, ненадежны, так как не все белковые тела Бенс-Джонса обладают соответствующими свойствами.

Более достоверно выявление этого парапротеина путем осаждения его при температуре 40 -60 °С. Однако и в этих условиях осаждения может не произойти в слишком кислой (рН < 3,0—3,5) или слишком щелочной (рН > 6,5) моче, при низкой ОПМ и низкой концентрации белка Бенс-Джонса. Наиболее благоприятные условия для его осаждения обеспечивает методика, предложенная Patnem: 4 мл профильтрованной мочи смешивают с 1 мл 2 М ацетатного буфера рН 4,9 и согревают 15 мин на водяной бане при температуре 56 °С. При наличии белка Бенс-Джонса в течение первых 2 мин появляется выраженный осадок.

При концентрации белка Бенс-Джонса меньше 3 г/л проба может быть отрицательной, но на практике это встречается крайне редко, поскольку его концентрация в моче, как правило, более значительна. На пробы с кипячением нельзя вполне полагаться. С полной достоверностью он может быть обнаружен в моче иммуно-электрофоретическим методом с использованием специфических сывороток против тяжелых и легких цепей иммуноглобулинов.

Для клиники имеет значение как качественное, так и количественное определение белка в моче.

Качественные пробы определения белка в моче
Предложено более 100 реакций качественного определения белка в моче. Большинство из них основаны на осаждении белка физическими (нагреванием) или химическими средствами. Наличие белка доказывается появлением мути.

Представляют интерес также и колориметрические сухие пробы.

Ниже будут описаны только наиболее важные для практики пробы.

Проба с сульфосалициловой кислотой . К нескольким миллилитрам мочи прибавляют 2-4 капли 20% раствора сульфосалициловой кислоты. При положительной реакции появляется муть. Результат обозначают терминами: опалесценция, слабо положительная, положительная или сильно положительная реакция. Проба с сульфосалициловой кислотой одна из самых чувствительных проб для установления белка в моче. Ею обнаруживаются даже самые незначительные патологические увеличения белка в моче. Благодаря простой технике эта проба нашла широкое применение.

Проба с асептолом . Асептол является заместителем сульфосалициловой кислоты. Его можно приготовить из имеющихся в любой лаборатории материалов (фенола и серной кислоты). В качестве реактива употребляют 20% раствор асептола. Проба проводится следующим образом: в пробирку, содержащую 2-3 мл мочи, подслаивают на дно 0,5-1 мл раствора асептола. Если на границе между двумя жидкостями получится белое кольцо из свернувшегося белка, проба положительна.

Проба Геллера . Под несколько миллилитров мочи подслаивают 1-2 мл 30% азотной кислоты (уд. вес 1,20). Если на границе обеих жидкостей получится белое кольцо, проба положительна. Реакция становится положительной, если белка больше 3,3 мг%. Иногда белое кольцо получается при наличии больших количеств уратов. В отличие от белкового кольца, уратное кольцо появляется не на границе между обеими жидкостями, а немного выше. Ларионова предлагает вместо 30% азотной кислоты употреблять в качестве реактива 1% раствор азотной кислоты в насыщенном растворе поваренной соли; это дает большую экономию азотной кислоты.

Проба с железистосинеродистым калием и уксусной кислотой . Эта реакция дает возможность отграничить белки сыворотки от нуклеоальбуминов.

В две пробирки наливают равные количества мочи. В одну из них добавляют несколько капель 30% раствора уксусной кислоты. Если получится муть по сравнению с контрольной пробиркой, моча содержит нуклеоальбумин. Если муть не появится, содержимое обеих пробирок смешивают и вновь разделяют на две части. В одну из двух пробирок добавляют несколько капель (избыток может превратить положительную пробу в отрицательную) 10% раствора желтой кровяной соли (железистосинеродистого калия). При наличии протеинов сыворотки получается муть.

При концентрированной моче, содержащей большие количества мочевой кислоты и уратов, пробу с железистосинеродистым калием и уксусной кислотой следует производить после предварительного разведения (в 2-3 раза) мочи водой. В противном случае может наступить помутнение, вызванное осевшей мочевой кислотой.

Это имеет особенно важное значение при исследование мочи грудных детей, содержащей много мочевой кислоты и уратов.

Из остальных качественных проб на белок в моче, основанных на осаждении белков, применение нашли: проба кипячением, пробы Эсбаха, Пэрди, Робертса, Альмена, Баллони, Буро, Клаудиуса, Корсо, Домэ, Гудманна-Сюзанна, Жолле, Экстона, Камлета, Кобуладзе, Лилиендаля-Петерсена, Полаччи, Понса, Шпиглера, Танре, Тиле, Броуна, Цушия и др.

При производстве качественных проб на белок в моче, основанных на осаждении белков, необходимо соблюдать следующие общие правила, нарушение которых приводит к значительным ошибкам при исследовании.

1. Исследуемая моча должна иметь кислую реакцию. При щелочной реакции, мочу слегка подкисляют уксусной кислотой. Производство пробы с щелочной мочой в тех случаях, когда используется в качестве реактива кислота, может привести к нейтрализации кислоты и к отрицательному результату при положительной реакции. Это особенно относится к пробе с сульфосалициловой кислотой, т. к. кислота прибавляется в очень малых количествах и легко может быть нейтрализована.

2. Исследуемая моча должна быть прозрачной.

3. Пробы для установления белка в моче следует всегда производить в двух пробирках, одна из которых служит контролем. Без контрольной пробирки можно не заметить легких помутнении при реакциях.

4. Количество прибавляемой кислоты при пробах не должно быть слишком большим. Большое количество кислоты может привести к образованию растворимых ацидальбуминов и к превращению положительной пробы в отрицательную.

Заслуживают большого внимания, благодаря своей простой технике, колориметрические сухие пробы. При этих пробах используется влияние, которое белок оказывает на цвет индикатора в буферном растворе (т. наз. протеиновая ошибка индикаторов). Лента фильтровальной бумаги, пропитанная кислым цитратным буфером и бромфеноловым синим в качестве индикатора, погружается на короткое время в мочу. Проба положительна, если получится сине-зеленая окраска. Сравнивая интенсивность окраски с цветными бумажными стандартами, можно вывести ориентировочно и количественные заключения. Индикаторная бумага продается в пачках с соответственными цветными стандартами, подобно универсальной индикаторной бумаге.

Методы, количественного определения белка в моче
Для количественного определения белка в моче предложено много методов. Точные количественные методы определения белков в биологическом материале не нашли широкого применения при определении белка в моче, вследствие сложной и трудоемкой техники. Широкое распространение получили волюметрические методы, особенно метод Эсбаха. Они очень просты, но, к сожалению, не отличаются большой точностью. Удобны для клиники также и методы группы Брандберга-Стольникова, дающие более точные результаты, чем волюметрические методы, при сравнительно простой технике. При наличии фотометра или нефелометра удобны также нефелометрические методы.

Метод Эсбаха . Он предложен парижским врачом Эсбахом в 1874 г. В специальную пробирку (альбуминометр Эсбаха) наливают мочу и реактив. Пробирку закупоривают резиновой пробкой, тщательно размешивают (не взбивая!) и оставляют в вертикальном положении до следующего дня. Отчитывают деление, до которого доходит столбик белкового осадка. Найденное число показывает содержание белка. Очень важно при методе Эсбаха, чтобы моча была кислой. Щелочная моча может нейтрализовать кислые составные части реактива и воспрепятствовать осаждению белков.

Преимущества метода: он прост и удобен на практике.

Недостатки: метод неточен, результат получается через 24 - 48 часов.

Метод Брандберга-Стольникова . Он основан на качественной пробе Геллера. Проба Геллера может быть использована для количественного определения, т. к. она дает положительный результат при содержании белка выше 3,3 мг%. Это предельная концентрация белка, ниже которой проба становится отрицательной.

Модификация Эрлиха и Альтгаузена . Советские ученые С. Л. Эрлих и А. Я. Альтгаузен модифицировали метод Брандберга-Стольникова, указав возможности упрощения исследования и экономии времени при его производстве.

Первое упрощение связано с временем появления кольца. Определяется точно время его появления, не придерживаясь непременно 2-ой и 3-ей минуты.

Второе упрощение дает возможность установить, какое следует сделать разведение. Авторы доказали, что по виду полученного кольца можно приблизительно установить необходимое разведение. Они различают нитевидное, широкое
и компактное кольцо.

Из нефелометрических методов заслуживает быть отмеченным метод Кингсбэрри и Кларка . В небольшой градуированный цилиндр наливают 2,5 мл фильтрованной мочи, пополняют 3% водным раствором сульфосалициловой кислоты до 10 мл. Тщательно размешивают и через 5 минут фотометрируют в 1 см кюветке, при желтом фильтре, употребляя воду в качестве компенсационной жидкости. При фотометре Пульфриха найденная экстинкция, умноженная на 2,5, дает количество белка в %о. В том случае, когда экстинкционный показатель выше 1,0, моча предварительно разводится в 2 раза, в 4 раза или еще больше.

Для того, чтобы иметь ясное представление о количестве выделенных в моче белков, необходимо определить не только их концентрацию в отдельной порции мочи, но и их общее суточное количество. Для этого собирают мочу больного в продолжение 24 часов, измеряют ее объем в миллилитрах и определяют концентрацию белка в порции суточной мочи в г%. Количество выделенных в моче за 24 часа белков определяется в зависимости от суточного количества мочи в граммах.

Клиническое значение белка в моче

Моча человека нормально содержит минимальные количества белка, которые не могут быть установлены обыкновенными качественными пробами исследования белка в моче. Выделение больших количеств белка, при которых обыкновенные качественные пробы на белок в моче становятся положительными - явление ненормальное, называемое протеинурией. Протеинурия бывает физиологической только у новорожденного, в первые 4-10 дней после рождения. Употребляемое обыкновенно название альбуминурия неправильно, т. к. в моче выделяются не только альбумины, но и другие виды белков (глобулины и пр.).

Протеинурию, как диагностический симптом, открыл в 1770 году Котуньо.

Наиболее важные функциональные почечные протеинурии у детей следующие:

1. Физиологическая протеинурия новорожденного . Встречается у большинства новорожденных и не имеет неблагоприятного значения. Объясняется неокрепшим почечным фильтром, повреждением при рождении или потерей жидкостей в первые дни жизни. Физиологическая протеинурия исчезает на 4-10-ый день после рождения (у недоношенных детей позже). Количество белка невелико. Он представляет собой нуклеоальбумин.

Неонатальная альбуминурия, продолжающаяся долгое время, может быть симптомом конгенитального люэса.

2. Инсультные альбуминурии . Они вызываются превышением порога нормальной раздражимости почечного фильтра значительными механическими, термическими, химическими, психическими и другими раздражениями - потерей жидкости у грудных детей (дегидрационная протеинурия), холодным купанием, обильной, богатой белками пищей (алиментарная протеинурия), пальпацией почки (пальпаторная альбуминурия), физическим переутомленном, страхом и т. д.

Инсультные альбуминурии легче появляются у детей в раннем возрасте, чем у детей в старшем возрасте и у взрослых, так как почки грудного и маленького ребенка легче поддаются раздражениям. Дегидрационная альбуминурия (нарушение кормления, гидрелабилитет, токсикозы, поносы , рвоты) особенно часто наблюдается у грудных детей.

Инсультные альбуминурии доброкачественны. Они исчезают сейчас же после устранения вызывающих их причин. В осадке иногда находятся единичные лейкоциты, цилиндры и эритроциты. Белок чаще всего представляет собой нуклеоальбумин.

3. Ортостатическая протеинурия . Это состояние характерно для детей дошкольного и школьного возрастов. Оно возникает на почве вазомоторных нарушений кровоснабжения почки. Типическим для ортостатической альбуминурии (отсюда и ее название) является то, что она появляется только при стоячем положении ребенка, когда позвоночник занимает лордотическое положение. В лежачем положении она исчезает. Выделяется нуклеоальбумин. В сомнительных случаях можно прибегнуть к ортостатическому опыту, который заключается в следующем: вечером, за час до того как лечь, ребенок опоражнивает мочевой пузырь; утром, вставая с постели, он снова выпускает мочу. Эта моча не содержит белка. Затем ребенка ставят на колени в продолжение 15-30 минут с палкой за спиной, между согнутыми локтями обеих рук. Создается положение лордоза, которое приводит к выделению белка, без изменений в осадке.

При ортостатической альбуминурии в сутки может выделяться 8-10 г белка.

Важнейшее клиническое значение между всеми протеинуриями имеют органические почечные протеинурии. Они вызываются органическими заболеваниями почек (нефритами, нефрозами, нефросклерозами). Протеинурия является одним из самых важных и самых известных симптомов органических заболеваний почек.

1. При остром и хроническом гломерулонефрите протеинурия встречается регулярно. Количество белка умеренное, причем не наблюдается параллельности между степенью протеинурии и тяжестью заболевания. Напротив, хронические и более тяжелые нефриты часто протекают с меньшими количествами белка, чем острые. После острого нефрита , иногда в продолжение долгого времени (годами), устанавливаются небольшие количества белка в моче, не имеющие патологического значения ("остаточная альбуминурия"). Не следует забывать, что могут встречаться и "нефриты без протеинурии". Иногда белок обнаруживается в одной порции мочи, а в другой его нет. Отношение альбуминов к глобулинам при острых нефритах невысоко, а при хронических нефритах выше.

2. При нефросклерозе количество белков в моче совсем незначительно, часто встречаются формы болезни без белка в моче.

3. Из всех почечных заболеваний нефрозы протекают с наиболее выраженной протеинурией.

4. При инфекционных и токсических состояниях встречаются так называемые лихорадочные и токсические протеинурии. Это острые нефрозы, при которых количество белка невелико. К этой группе относятся и протеинурии при конвульсивных состояниях (судорогах), при гиперфункции щитовидной железы, желтухах, инвагинациях, энтероколитах, ожогах , тяжелых анемиях и т. д. Эти альбуминурии доброкачественны и быстро проходят (транзиторные альбуминурии).

5. При застое крови в почках встречается так называемая застойная альбуминурия, характерная для сердечно больных в стадии декомпенсации. Она встречается также при асцитах и опухолях живота.

При лихорадочных, токсических и застойных альбуминуриях особенно сильно выражена повышенная проницаемость почечного фильтра. По мнению некоторых авторов, многие на этих протеинурии протекают без органического повреждения паренхимы почек.

Внепочечные альбуминурии вызываются обыкновенно белковыми примесями (секрециями, распавшимися клетками), которые выделяются заболевшими мочевыми путями и половыми органами. Чаще встречаются внепочечные альбуминурии вследствие цистопиелитов (пиурии), реже вследствие вульвовагинитов, конкрементов и опухолей мочевых путей.

При внепочечной альбуминурии в осадке находят большое количество лейкоцитов и бактерий. Почечные элементы почти не встречаются. Количество белка невелико. Фильтрованная или центрифугированная моча обыкновенно не дает положительной пробы на белок.

У выздоравливающих от пиелита альбуминурия исчезает после бактериурии и пиурии.

Следует подчеркнуть как характерное явление, что в раннем детском возрасте органические почечные заболевания появляются чрезвычайно редко, поэтому и органические протеинурии также редки. Из них встречаются, главным образом, лихорадочные и токсические. В отличие от органических протеинурии, у детей в раннем возрасте очень сильно распространены инсультные альбуминурии.

У детей старшего возраста органические протеинурии чаще функциональных. Вообще с возрастом функциональные протеинурии встречаются реже, а органические чаще.

Электрофоретические исследования белков в моче

Ряд авторов пользуются электрофоретическим методом для исследования белков в моче (уропротеинов). Из полученных электрофореграмм видно, что они имеют тот же качественный состав, как и белки плазмы. Это указывает на то, что белки в моче происходят из плазменных белков.

Является одним из наиболее важных и постоянных признаков заболеваний почек и мочевых путей. Определение концентрации белка в моче является обязательным и важным элементом исследования мочи. Выявление и количественная оценка протеинурии важна не только в диагностике многих первичных и вторичных заболеваний почек, оценка изменения выраженности протеинурии в динамике несет информацию о течении патологического процесса, об эффективности проводимого лечения. Обнаружение белка в моче даже в следовых количествах должно настораживать в отношении возможного заболевания почек или мочевых путей и требует повторного анализа. Особо следует отметить бессмысленность исследования мочи и, в частности, определения белка мочи без соблюдения всех правил ее сбора .

Все методы определения белка в моче можно разделить на:

  • Качественные,
  • Полуколичественные,
  • Количественные.

Качественные методы

Все качественные пробы на белок в моче основаны на способности белков к денатурации под влиянием различных физических и химических факторов. При наличии белка в исследуемом образце мочи появляется либо помутнение, либо выпадение хлопьевидного осадка.

Условия определения белка в моче на основе реакции коагуляции:

  1. Моча должна иметь кислую реакцию . Мочу щелочной реакции подкисляют несколькими (2 - 3) каплями уксусной кислоты (5 – 10%).
  2. Моча должна быть прозрачной. Помутнение устраняется через бумажный фильтр. Если помутнение не исчезает, добавляют тальк или жженую магнезию (около 1 чайной ложки на 100 мл мочи), взбалтывают и фильтруют.
  3. Качественную пробу следует проводить в двух пробирках, одна из них – контрольная.
  4. Искать помутнение следует на черном фоне в проходящем свете.

К качественным методам определения белка в моче относятся:

  • проба с кипячением, и другие.

Как показывают многочисленные исследования, ни один из большого числа известных методов качественного определения белка в моче не позволяет получать надежные и воспроизводимые результаты. Несмотря на это, в большинстве КДЛ в России эти методы широко используются в качестве скрининга – в моче с положительной качественной реакцией в дальнейшем проводят количественное определение белка. Из качественных реакций чаще используют пробу Геллера и пробу с сульфосалициловой кислотой, однако пробу с сульфосалициловой кислотой большей частью считают наиболее подходящей для выявления патологической протеинурии. Проба с кипячением в настоящее время практически не используется в связи с ее трудоемкостью и длительностью.

Полуколичественные методы

К полуколичественным методам относятся:

  • определение белка в моче с помощью диагностических тест-полосок.

В основе метода Брандберга-Робертса-Стольникова лежит кольцевая проба Геллера, поэтому при данном методе наблюдаются те же ошибки, что и при пробе Геллера.

В настоящее время для определения белка в моче все чаще используются диагностические полоски. Для полуколичественного определения белка в моче на полоске в качестве индикатора чаще всего используется краситель бромфеноловый синий в цитратном буфере. О содержании белка в моче судят по интенсивности сине-зеленой окраски, развивающейся после контакта реакционной зоны с мочой. Результат оценивается визуально или с помощью анализаторов мочи. Несмотря на большую популярность и очевидные преимущества методов сухой химии (простота, скорость выполнения анализа) данные методы анализа мочи в целом и определения белка в частности не лишены серьезных недостатков. Одним из них, приводящих к искажению диагностической информации, является большая чувствительность индикатора бромфенолового синего к альбумину по сравнению с другими белками. В связи с этим, тест-полоски в основном приспособлены к обнаружению селективной гломерулярной протеинурии, когда практически весь белок мочи представлен альбумином. При прогрессировании изменений и переходе селективной гломерулярной протеинурии в неселективную (появление в моче глобулинов) результаты определения белка оказываются заниженными по сравнению с истинными значениями. Данный факт не дает возможности использовать данный метод определения белка в моче для оценки состояния почек (гломерулярного фильтра) в динамике. При тубулярной протеинурии результаты определения белка также оказываются заниженными. Определение белка с помощью диагностических полосок не является надежным индикатором низких уровней протеинурии (большинство выпускаемых в настоящее время диагностических полосок не обладают способностью улавливать белок в моче в концентрации ниже, чем 0,15 г/л). Отрицательные результаты определения белка на полосках не исключают присутствия в моче глобулинов, гемоглобина, уромукоида, белка Бенс-Джонса и других парапротеинов.

Хлопья слизи с высоким содержанием гликопротеидов (например, при воспалительных процессах в мочевых путях, пиурии, бактериурии) могут оседать на индикаторной зоне полоски и приводить к ложноположительным результатам. Ложноположительные результаты могут также быть связаны с высокой концентрацией мочевины . Плохое освещение и нарушение цветоощущения может быть причиной неточного результата.

В связи с этим, использование диагностических полосок следует ограничить скринирующими процедурами, а результаты, полученные с их помощью, следует рассматривать лишь как ориентировочные.

Количественные методы

Корректное количественное определение белка в моче в ряде случаев оказывается непростой задачей. Трудности ее решения определяются следующим рядом факторов:

  • низким содержанием белка в моче здорового человека, часто находящимся на пороге чувствительности большинства известных методов;
  • присутствием в моче множества соединений, способных вмешиваться в ход химических реакций;
  • значительными колебаниями содержания и состава белков мочи при различных заболеваниях, затрудняющими выбор адекватного калибровочного материала.

В клинических лабораториях преимущественно применяются так называемые «рутинные» методы определения белка в моче, однако они далеко не всегда позволяют получать удовлетворительные результаты.

С точки зрения специалиста-аналитика, работающего в лаборатории, метод, предназначенный для количественного определения белка в моче, должен отвечать следующим требованиям:

  • обладать линейной зависимостью между поглощением образовавшегося в ходе химической реакции комплекса и содержанием белка в пробе в широком диапазоне концентраций, что позволит избежать дополнительных операций при подготовке пробы к исследованию;
  • должен быть прост, не требовать высокой квалификации исполнителя, выполняться при малом количестве операций;
  • обладать высокой чувствительностью, аналитической надежностью при использовании небольших объемов исследуемого материала;
  • быть устойчивым к воздействию различных факторов (колебаниям состава образца, присутствию лекарственных препаратов и др.);
  • обладать приемлемой стоимостью;
  • быть легко адаптируемым к автоанализаторам;
  • результат определения не должен зависеть от белкового состава исследуемого образца мочи.

Ни один из известных к настоящему времени методов количественного определения белка в моче не может в полной мере претендовать на роль «золотого стандарта».

Количественные методы определения белка в моче можно разделить на турбидиметрические и колориметрические.

Турбидиметрические методы

К турбидиметрическим методам относятся:

  • определение белка с сульфосалициловой кислотой (ССК),
  • определение белка с трихлоруксусной кислотой (ТХУ),
  • определение белка с бензетоний хлоридом.

Турбидиметрические методы основаны на снижении растворимости белков мочи вследствие образования суспензии взвешенных частиц под воздействием преципитирующих агентов. О содержании белка в исследуемой пробе судят либо по интенсивности светорассеяния, определяемого числом светорассеивающих частиц (нефелометрический метод анализа), либо по ослаблению светового потока образовавшейся суспензией (турбидиметрический метод анализа).

Величина светорассеяния в преципитационных методах обнаружения белка в моче зависит от множества факторов: скорости смешивания реактивов, температуры реакционной смеси, значения pH среды, присутствия посторонних соединений, способов фотометрии. Тщательное соблюдение условий реакции способствует образованию стабильной суспензии с постоянным размером взвешенных частиц и получению относительно воспроизводимых результатов.

Некоторые лекарственные препараты влияют на результаты турбидиметрических методов определения белка в моче, приводя к так называемым «ложноположительным», либо «ложноотрицательным» результатам. К ним относятся некоторые антибиотики (бензилпенициллин, клоксациллин и др.), рентгеноконтрастирующие йодсодержащие вещества, сульфаниламидные препараты.

Турбидиметрические методы плохо поддаются стандартизации, часто приводят к получению ошибочных результатов, но, несмотря на это, в настоящее время они широко используются в лабораториях из-за невысокой стоимости и доступности реактивов. Наиболее широко в России используется метод определения белка с сульфосалициловой кислотой.

Колориметрические методы

Наиболее чувствительными и точными являются колориметрические методы определения общего белка мочи, основанные на специфических цветных реакциях белков.

К ним относятся:

  1. биуретовая реакция,
  2. метод Лоури,
  3. методы, основанные на способности различных красителей образовывать комплексы с белками:
    • Понсо S (Ponceau S),
    • Кумасси бриллиантовый синий (Coomassie Brilliant Blue)
    • пирогаллоловый красный (Pyrogallol Red).

С точки зрения исполнителя, в повседневной работе лаборатории при большом потоке исследований биуретовый метод является неудобным из-за большого числа операций. В то же время, метод характеризуется высокой аналитической надежностью, позволяет определять белок в широком диапазоне концентраций и выявлять альбумин, глобулины и парапротеины со сравнимой чувствительностью, вследствие чего биуретовый метод рассматривают в качестве референтного и рекомендуют для сравнения других аналитических методов обнаружения белка в моче. Биуретовый метод определения белка в моче предпочтительно выполнять в лабораториях, обслуживающих нефрологические отделения, и использовать в тех случаях, когда результаты определения с помощью других методов представляются сомнительными, а также для определения величины суточной потери белка у нефрологических больных.

Метод Лоури, обладающий более высокой чувствительностью по сравнению с биуретовым методом, сочетает биуретовую реакцию и реакцию Фолина на аминокислоты тирозин и триптофан в составе белковой молекулы. Несмотря на высокую чувствительность, данный метод не всегда обеспечивает получение надежных результатов при определении содержания белка в моче. Причиной тому служит неспецифическое взаимодействие реактива Фолина с небелковыми компонентами мочи (чаще всего аминокислотами, мочевой кислотой , углеводами). Отделение этих и других компонентов мочи путем диализа или осаждения белков позволяет с успехом использовать данный метод для количественного определения белка в моче. Некоторые лекарственные препараты – салицилаты, хлорпромазин, тетрациклины способны оказывать влияние на данный метод и извращать результаты исследования.

Достаточная чувствительность, хорошая воспроизводимость и простота определения белка по связыванию красителей делают эти методы перспективными, однако высокая стоимость реактивов препятствует более широкому их использованию в лабораториях. В настоящее время в России все большее распространение получает метод с пирогаллоловым красным.

Проводя исследование уровня протеинурии, нужно иметь ввиду, что различные методы определения протеинурии имеют разную чувствительность и специфичность к многочисленным белкам мочи.

протеинурия = 0,4799 B + 0,5230 L;
протеинурия = 1,5484 B – 0,4825 S;
протеинурия = 0,2167 S + 0,7579 L;
протеинурия = 1,0748 P – 0,0986 B;
протеинурия = 1,0104 P – 0,0289 S;
протеинурия = 0,8959 P + 0,0845 L;

где:
B – результат измерения с Кумасси G-250;
L - результат измерения с реактивом Лоури;
P - результат измерения с молибдатом пирогаллола;
S - результат измерения с сульфосалициловой кислотой.

Учитывая выраженные колебания уровня протеинурии в различное время суток, а также зависимость концентрации белка в моче от диуреза, различное его содержание в отдельных порциях мочи, в настоящее время при патологии почек принято оценивать выраженность протеинурии по суточной потере белка с мочой, то есть определять так называемую суточную протеинурию. Она выражается в г/сут.

При невозможности сбора суточной мочи рекомендуется определять в разовой порции мочи концентрации белка и креатинина. Поскольку скорость выделения креатинина в течение дня достаточно постоянна и не зависит от изменения скорости мочеотделения, отношение концентрации белка к концентрации креатинина постоянно. Данное отношение хорошо коррелирует с суточной экскрецией белка и, следовательно, может использоваться для оценки выраженности протеинурии. В норме отношение белок/креатинин должно быть менее 0,2. Белок и креатинин измеряют в г/л. Важным достоинством метода оценки выраженности протеинурии по соотношению белок-креатинин является полное исключение ошибок, связанных с невозможностью или неполным сбором суточной мочи.

Литература:

  • О. В. Новоселова, М. Б. Пятигорская, Ю. Е. Михайлов, "Клинические аспекты выявления и оценки протеинурии", Справочник заведующего КДЛ, № 1, январь 2007 г.
  • А. В. Козлов, "Протеинурия: методы ее выявления", лекция, Санкт-Петербург, СПбМАПО, 2000 г.
  • В. Л. Эмануэль, «Лабораторная диагностика заболеваний почек. Мочевой синдром», - Справочник заведующего КДЛ, № 12, декабрь 2006 г.
  • В.И. Пупкова, Л.М. Прасолова - Определение белка в моче и спинномозговой жидкости. Кольцово, 2007 г.
  • Справочник по клиническим лабораторным методам исследования. Под ред. Е. А. Кост. Москва, "Медицина", 1975 г.

Алгоритм определения белка в моче экспресс методом.

Цель: Ранняя диагностика поздних гестозов.

Оснащение: судно, стерильная баночка, штатив с пробирками, флакон с 30% сульфосалициловой или уксусной кислотой, пипетка, спиртовая горелка.

1. Объясните беременной о необходимости данного исследова­ния.

2. Попросите беременную собрать мочу в стерильную баночку.

3. В пробирку налейте 4-5 мл. исследуемой мочи.

4. Проба с сульфосалициловой кислотой:

Добавьте в пробирку с мочой 6-10 капель 30% сульфосалици­ловой кислоты. При наличии белка в моче образуется осадок или муть.

5. Проба с уксусной кислотой:

В пробирку наливают 6-10 мл мочи и кипятят на спиртовой горелке - моча, содержащая белок, мутнеет. К помутневшей моче прибавляют несколько капель 3-5% раствора уксусной кислоты. Если муть исчезла - проба отрицательная.

Алгоритм определения биологической активности матки к родам. «Окситоциновый тест».

Цель: определение готовности организма к родам.

Оснащение: 0,9% - 500,0 физ.раствора, 5ЕД окситоцина, шприц 10,0, 70% спирт, вата, часы с секундной стрелкой.

1. Объясните беременной о необходимости данного исследования.

2. Попросите беременную в положении лежа на спине обеспе­чить себе полный эмоциональный и физический покой в течение 15 минут. Это необходимо для предупреждения возможных сокращений матки на воздействие различных факторов.

3. Наберите в 10-граммовый шприц 10 мл. раствора, приготовленного из расчета 0,01 ЕД окситоцина на 1 мл. изотонического раствора натрия хлорида. Раствор готовят следующим образом:

5 ЕД (1мл.) окситоцина разводят в 500 мл. изотонического раствора хлорида натрия (5 ИД: 500,0 = 0,01 ЕД: 1 мл). Из флакона 10-граммовым шприцем набирают 10,0 полученно­го раствора для проведения теста.

4. Проведите венепункцию и, убедившись, что она не вызвала сокращения матки, приступите к внутривенному введению раствора окситоцина.

5. Определите время начала введения раствора.

6. «Толчкообразно», по 1 мл. с интервалом 1 мин., введите рас­твор, но не более 5 мл. Введение раствора прекратите при появлении сокращений матки.

7. Тест считается положительным, если сокращение матки зарегистрировано в течение первых 3-х минут от начала инъекций и роды наступят в ближайшие 24-48 часов. Сокращение матки появившиеся после 4 мин от введения считается отрицательным тестом – роды наступят через 3 – 8 дней.

8. Результат зафиксируйте в первичной документации.

5.4. Алгоритм оценки «зрелости» шейки матки.

Цель: определение готовности шейки матки к родам.

Оснащение: дез.средство, ветошь, стерильные перчатки, таблица.

1.Объясните беременной о необходимости данной процедуры.

2.Обработайте кресло ветошью, смоченной в 0,5% раствором гипохлорита кальция

3. Постелите на кресло чистую пеленку.

4. Уложите беременную на гинекологическое кресло.

5. Обработайте наружные половые органы одним из дезинфицирующих растворов.

6. Наденьте стерильные перчатки.

7. Левой рукой, первым и вторым пальцами разведите большие половые губы, а 2-3 палец правой руки введите во влагали­ще.